## Mathematics Problem Solving Scoring Guide

|  | Emerging | Developing | Proficient | Exemplary |
| :---: | :---: | :---: | :---: | :---: |
| Conceptual Understanding <br> Key Question: Does the student's interpretation of the problem using mathematical representations and procedures accurately reflect the important mathematics in the problem? | 1. Your mathematical representations of the problem were incorrect. <br> 2. You used the wrong information in trying to solve the problem. <br> 3. The mathematical procedures you used would not lead to a correct solution. <br> 4. You used mathematical terminology incorrectly. | 1. Your choice of forms to represent the problem was inefficient or inaccurate. <br> 2. You used some but not all of the relevant information from the problem. <br> 3. The mathematical procedures you used would lead to a partially correct solution. <br> 4. You used mathematical terminology imprecisely. | 1. Your choices of mathematical representations of the problem were appropriate. <br> 2. You used all relevant information from the problem in your solution. <br> 3. The mathematical procedures you chose would lead to a correct solution. <br> 4. You used mathematical terminology correctly. | 1. Your choice of mathematical representations helped clarify the problem's meaning. <br> 2. You uncovered hidden or implied information not readily apparent. <br> 3. You chose mathematical procedures that would lead to an elegant solution. <br> 4. You used mathematical terminology precisely. |
| Strategies and Reasoning <br> Key Question: Is there evidence that the student proceeded from a plan, applied appropriate strategies, and followed a logical and verifiable process toward a solution? | 1. Your strategies were not appropriate for the problem. <br> 2. You didn't seem to know where to begin. <br> 3. Your reasoning did not support your work. <br> 4. There was no apparent relationship between your representations and the task <br> 5. There was no apparent logic to your solution. <br> 6. Your approach to the problem would not lead to a correct solution. | 1. You used an oversimplified approach to the problem. <br> 2. You offered little or no explanation of your strategies. <br> 3. Some of your representations accurately depicted aspects of the problem. <br> 4. You sometimes made leaps in your logic that were hard to follow. <br> 5. Your process led to a partially complete solution. | 1. You chose appropriate, efficient strategies for solving the problem. <br> 2. You justified each step of your work. <br> 3. Your representation(s) fit the task. <br> 4. The logic of your solution was apparent. <br> 5. Your process would lead to a complete, correct solution of the problem. | 1. You chose innovative and insightful strategies for solving the problem. <br> 2. You proved that your solution was correct and that your approach was valid. <br> 3. You provided examples and/or counterexamples to support your solution. <br> 4. You used a sophisticated approach to solve the problem. |

Northwest Regional Educational Laboratory
Mathematics and Science Education Center

|  | Emerging | Developing | Proficient | Exemplary |
| :---: | :---: | :---: | :---: | :---: |
| Computation \& Execution <br> Key Question: Given the approach taken by the student, is the solution performed in an accurate and complete manner? | 1. Errors in computation were serious enough to flaw your solution. <br> 2. Your mathematical representations were inaccurate. <br> 3. You labeled incorrectly. <br> 4. Your solution was incorrect. <br> 5. You gave no evidence of how you arrived at your answer. | 1. You made minor computational errors. <br> 2. Your representations were essentially correct but not accurately or completely labeled. <br> 3. Your inefficient choice of procedures impeded your success. <br> 4. The evidence for your solution was inconsistent or unclear. | 1. Your computations were essentially accurate. <br> 2. All visual representations were complete and accurate. <br> 3. Your solution was essentially correct. <br> 4. Your work clearly supported your solution. | 1. All aspects of your solution were completely accurate. <br> 2. You used multiple representations for verifying your solution. <br> 3. You showed multiple ways to compute your answer. |
|  |  |  |  |  |
| Communication <br> Key Question: Was I able to easily understand the student's thinking or did I have to make inferences and guesses about what they were trying to do? | 1. I couldn't follow your thinking. <br> 2. Your explanation seemed to ramble. <br> 3. You gave no explanation for your work. <br> 4. You did not seem to have a sense of what your audience needed to know. <br> 5. Your mathematical representations did not help clarify your thinking. | 1. Your solution was hard to follow in places. <br> 2. I had to make inferences about what you meant in places. <br> 3. You weren't able to sustain your good beginning. <br> 4. Your explanation was redundant in places. <br> 5. Your mathematical representations were somewhat helpful in clarifying your thinking. | 1. I understood what you did and why you did it. <br> 2. Your solution was well organized and easy to follow. <br> 3. Your solution flowed logically from one step to the next. <br> 4. You used an effective format for communicating. <br> 5. Your mathematical representations helped clarify your solution. | 1. Your explanation was clear and concise. <br> 2. You communicated concepts with precision. <br> 3. Your mathematical representations expanded on your solution. <br> 4. You gave an in-depth explanation of your reasoning. |


| Insights <br> Key Question: Does the student grasp the deeper structure of the problem and see how the process used to solve this problem connects it to other problems or "real-world" applications? | 1. You were unable to recognize patterns and relationships. <br> 2. You found a solution and then stopped. <br> 3. You found no connections to other disciplines or mathematical concepts. | 1. You recognized some patterns and relationships. <br> 2. You found multiple solutions but not all were correct. <br> 3. Your solution hinted at a connection to an application or another area of mathematics. | 1. You recognized important patterns and relationships in the problem. <br> 2. You found multiple solutions using different interpretations of the problem. <br> 3. You connected your solution process to other problems, areas of mathematics or applications. | 1. You created a general rule or formula for solving related problems. <br> 2. You related the underlying structure of the problem to other similar problems. <br> 3. You noted possible sources of error or ambiguity in the problem. <br> 4. Your connection to a real-life application was accurate and realistic. |
| :---: | :---: | :---: | :---: | :---: |

